

Page 1 / 18

Olympus 製 Epoch650 設定手順

探触子・ケーブルは会場に用意されたものを使用しますが、念のため可能であれば、充電器/AC 電源を 持参します。試験会場では SD カードを抜き Epoch650 の完全初期化が実施されます。初期状態からの設 定手順を熟知する必要があります。

	1+ 11 123.00 15 1.87 14 7.49 L2.0 m 対応報題 11 23.00 次へ 11 23.00 11 23.00 13 5 14 7.49 14 7.49 14 7.49 14 7.49 15 7.49 15 7.80 17 7.90 18 8 17 8 18 8 18 18 18 18 18 18 18 18 18 18 18 18 18
d:11 ゲイン 満定範囲	1
15 mm ゲート MA表示	
2"" F 71-X	
EPOCH 650	P1 P2 P3 P4 P5 P6 P7

* 事前の手順練習は項目3からスタートします。普段は初期化しません!

1. EPOCH650 特有の仕様1
1.1 ダイレクトアクセスキー
1.2 メニューグループ
1.3 ダイレクトアクセスキー操作具体例
2. EPOCH650 探傷器 の初期化
3. EPOCH650の事前設定
4. 測定範囲の調整(2 点校正機能使用)10
5. STB 屈折角の測定
6. JIS-DAC カーブの作成
6.1 評価モードを JIS DAC に設定する
6.2 0.5S ポイントの登録
6.3 0.5S ポイントの登録
6.3 1.5S ポイントの登録と完了操作
6.4 基準 DAC 線(L 線)の選択、測定範囲、屈折角、板厚の確認

1. EPOCH650 特有の仕様

初期化(メモリークリア)を行うと表示言語は英語であり、単位も inch 表示となる。初期化後は G1 モードの初期値が ピークであり J-FLANK やエッジに変更が必要。他メーカーの装置と異なり、 EPOCH650 では音速を変更すると測定範囲が変更されてしまう。測定範囲、音速、P ディレイ、ゲート 位置、ゲイン等の機能は微粗調整モードになり、最小限単位でしか変更できない。チェックキー がを 押すことにより各パラメータは粗調整モードに変更され、数値が[]で囲まれて表示される。 EPOCH650 鉄骨超音波・実技試験向け設定手順

信明ゼネラル 検索 〒105-0004 東京都港区新橋 6-12-6 Tel:03-3578-1351 Fax:03-3578-1354

1.1 ダイレクトアクセスキー

パラメータ値の粗調整、微調整

チェックキー

Page 2 / 18

微調整か粗調整かの選択

エスケープキー

- ・セットアップ画面では検査画面に戻る
- ・メニュー選択では基本メニューに戻る
- ・ゲイン、ゲート、測定範囲のパラメータ設定中には、 前のメニューに戻る

ダイレクトアクセスキー6個×2機能 ゲイン、測定範囲、ゲート、MA、フリーズ等の設 定画面にダイレクトアクセス

2ndFに続いて押すと、自動xx%等のオレンジ色の 機能にダイレクトアクセスします

EPOCH 650

次へ EPOCH650には5個のメニューグループがあり、次へキャ

で移動します

各メニューに機能選択のファンクションキーがあ り、それぞれのファンクション(機能)についての値 (パラメータ)を設定・選択するパラメータキーがあ ります。

この構成は、GE・Krautkramerや菱電湘南エレク トロニクス社の探傷器のメニュー構造と基本的に同 じです。

鉄骨超音波・実技試験向け設定手順

Page 3 / 18

1.3 ダイレクトアクセスキー操作具体例

ダイレクトアクセスキーは、どのメニューの画面が表示されていても、ダイレクトアクセスキーを クリックすることにより、ダイレクトにAスコープ波形を操作できます。

ゲインを変えたり、ゲートを移動したり、波形をフリーズ・MA表示したりの操作がダイレクトに 実行できます。これは EPOCH650 の強烈な個性です。

2. EPOCH650 探傷器の初期化

EPOCH650 を初期化し、言語(英語→日本語)、測定単位(インチ→mm)、ゲート検出方法(ピーク →J-Flank)などを変更します。(実技試験時や探傷器がハングアップした時以外は実施しません!) (実技練習のために初期化する場合にはパラメータリセットを選択します)

鉄骨超音波・実技試験向け設定手順

Page 4 / 18

Language	
Language English German French Italian Spanish Portuguese Russian Chinese Japanese Polish Custom	調整キー を使用し、「Japanese」を選択 次に P1・Select をクリック 最下段に、Please power gage OFF and ON for changes to take effect と表示されます 電源を一度 OFF にし、数秒後に、電源 ON
Select 内径 [001 グイン 100 100 第二次 100 100 第二次 100 100 100 100 100	再起動したときの画面表示 標準色で表示され、単位系は inch になっています 次へキー 変 を2回押し、画面設定の画面へ 画面設定画面 P1・画面設定をクリック (必要がなければ省略)
A-スキャン波形表示 外縁 X軸グリッドモード 標準 Y軸グリッドモード 100 ペースライン オフ	次へキー える 6 回押し 配色 ヘカーソルを移動
VGA出力 発度 50 % 記色 [屋外(白色)	屋内 が選択されているので、調整キーのを使用し、 「 屋外(白色) 」を選択 エスケープキーので探傷画面に戻ります

鉄骨超音波・実技試験向け設定手順

Page 5 / 18

DINDNAME00 内径1001 ゲイン	
1½ 1± 1↓ 17 III III III III III III III III III I	探傷画面(画面設定)に戻ったら、F2・測定設定を選択
	単位がインチになっていれば、 P2・単位 をクリック
375 設定 単位 TH分解能 %分解能 アナログ出す 特殊 自動XX%	
読込 インチ X.XXX X 80 % DINDNAMEOO 内径 [001 ゲイン	
1× 1± 1↓ 1↓ 1↓ 1↓ 1↓ 1↓ 1↓ 1↓ 1↓ 1↓ 1↓ 1↓ 1↓	
100 ···································	調整キー・・・・を使用し、「mm」に変更
80 · · · · · · · · · · · · · · · · · · ·	•
40	
20 ·····	P3・ 探傷器設定 を選択
設定 単位 TH分解能 %分解能 アナログ出す 自動XX% 読込 mm X.XX X アナログ出す 特殊 自動XX%	
□ NONAMEOO 内径 001 ダイン 1% 1ま 1↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
100	P6・編集バラメータを選択 (実共試験時などでは劣略する)
80 ····································	
40	
At III ##K ク % 7 ク ? Option MILIOSE パラ メータ パラ メーク編集	編集パラメータの画面では、様々な画面に表示されるデ
Units mm	フォルトの値の一覧が表示されます
ゲイン dB 10.0 20.0 30.0 40.0 50.0 170.0 場合な研研 10.00 20.00 50.00 100.00 125.00 500.00	次へキー 次へ を押すとカーソル位置が移動します
選延 0.00 -10.00 10.00 20.00 30.00 40.00 50.00 周波数 MHz 1.00 2.00 2.25 4.00 5.00 10.00 20.00	デフォルト値は探傷作業に便利なように変更可能です。
厚さ 0.000 [2.500 5.000 0.000 20.000 25.000 40.000 入射点 0.00 2.00 4.000 5.00 6.00 8.00 10.00	カーソル位置の値は調整キーで変更可能です。使
	用し、変更でさます。変更後は、エスケーブキー
	で探傷画面に戻り、 4回でゲート画面へ

鉄骨超音波・実技試験向け設定手順

Page 6 / 18

EPOCH650 鉄骨超音波・実技試験向け設定手順

Page 7 / 18

3. EPOCH650 の事前設定

EPOCH650の初期化後の言語、測定単位等の復旧後、斜角探傷用にJISDAC線を作成するには以下の手順で溶接部斜角探傷用の事前設定を実施します。

鉄骨超音波・実技試験向け設定手順

Page 8 / 18

信明ゼネラル | 〒105-0004 東京都港区新橋 6-12-6 Tel:03-3578-1351 Fax:03-3578-1354

鉄骨超音波・実技試験向け設定手順

Page 9 / 18

鉄骨超音波・実技試験向け設定手順

Page 10 / 18

4. 測定範囲の調整(2点校正機能使用)

STB-A3 50R でピークエコーの多重反射を 使用して、50mm と 100mm での 2 点間校 正を実施 (ゼロ点校正と音速校正)

*オリンパスの M さんは「音速校正→ゼロ点校正の順が 由緒正しい手順」と主張されますが、本取説では他製品の 手順と統一して記載しています。

信明ゼネラル | 検索 〒105-0004 東京都港区新橋 6-12-6 Tel:03-3578-1351 Fax:03-3578-1354

鉄骨超音波・実技試験向け設定手順

Page 11 / 18

NONAMEOO 内径 001 ゲイン 1% 88 1± 64.29 1↓ 64.29 1↓ 100 100 100 100 100 100	校正の継続
au	ゼロ点校正に引き続き音速校正を実施するので、
⁵⁰ ゼロ点校正のため値を入力 40	音速校正するために P3・継続 をクリック
20 20 20	
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
Child Name 200 内径 1001 ゲイン 1% 88 1ま 64.29 1計 64.29 1計	2 点校正の第2 手順(音速校正)
	50Rの2回目の反射エコー100mmエコーは非常に小さ
	くしか表示されていないので、ゲインを上げる必要があ
ο θ μ. θ μ	3
CAL	
キャンセル 音速校正 50 00 50 00 50 00 50 00	
NONAMEOO 内径1001 グイン 1% 110 1± 64.08 1日 0.000 0.000	
□ NONAHEOO 1× 110 1± 64.08 1H 100 1 ± 64.08 1H 100 1 ± 64.08 1H	STB-A3 50Rの2回目ピークエコー
▶ NONAMEOO 1× 110 1± 64.08 1H 100 100 1± 64.08 1H 100 100 1± 64.08 1H 100 1± 64.08 1H 11 125.00 ± 11 1	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%招ぐら
□ INDIANEO0 内径 001 1½ 110 1½ 110 1½ 64.08 10 1½ 11 125.00 11 125.00 12 12 14 12 15 12 16 12 17 125.00 18 12 19 12 10 12 11 125.00 12 12 13 12 14 12 15 12 16 12 17 125.00 18 <t< th=""><th>STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐら いの高さになるように、感度を上げます</th></t<>	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐら いの高さになるように、感度を上げます
NONAMEOO 内径 001 水12 110 11 64.08 11 64.08 11 64.08 11 64.08 11 64.08 11 64.08 11 64.08 11 125.00 1 近 125.00 近 近 近 125.00 世 派援 0.00 基本 パルサー の0	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐら いの高さになるように、感度を上げます
NONAHEOO NONAHEOOO NONAHEOOO NONAHEOOO NONAHEOO NONAHEOOO NONAHEOOO NONAHEOOO NONAHEOOO NONAHEOOO NONAHEOOO NONAHEOOO NONAHEOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐらいの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています)
NONAMEOO 内径 001 サイン 1½ 110 1± 64.08 11 100 1± 64.08 11 100 1± 64.08 11 100 1± 64.08 11 100 1± 64.08 11 100 1± 64.08 11 100 1± 64.08 11 100 1± 64.08 11 100 1± 64.08 11 100 1± 64.08 11 100 1± 64.08 11 110 1± 64.08 11 125.00 125.00 125.00 220 11 125.00 20 11 125.00 20 11 125.00 21 125.00 125.00 22 14 125.00 14 14 14 20 14 14	STB-A3 50R の 2 回目ピークエコー 50R の 2 回目の反射エコー100mm が画面 60%超ぐら いの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています)
NONAMEOO 内徑 001 1½ 110 1± 64.08 11 100 1± 64.08 11 64.08 100 1± 64.08 11 125.00 100 20 20 20 100 100 100 100 100 100 100 100 100 100 200 200 100 500 700	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐらいの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキーので戻る
NORAHEOO 内径 001 ゲイン 1× 110 1± 64.08 11 100 1± 64.08 11 644.08 100 1± 64.08 11 125.00 100 1± 64.08 11 125.00 100 1± 10 125.00 22 100 10 10 10 10 10 10.0 20.0 30.0 40.0 50.0 60.0 70.0 PME 1001 ゲイン ゲイン ゲイン ゲイン ゲイン	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐら いの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキー
NORAHEOO 内径 001 ゲイン 60.0 dB 1% 110 1± 64.08 11 64.08 11 100 1± 64.08 11 64.08 11 125.00 100 120 125.00 125.00 125.00 125.00 100 100 125.00 125.00 125.00 125.00 100 20 10.0 20.0 30.0 40.0 50.0 60.0 70.0 100 20.0 30.0 40.0 50.0 60.0 70.0 112 65 1± 114.35 11 114.35 11 114.35	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐらいの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキーので戻る
NORAHEOO 内径 001 グイン 1½ 110 1± 64.08 11 100 1± 64.08 11 64.08 100 1± 64.08 11 125.00 100 1± 64.08 11 125.00 100 1± 64.08 11 125.00 100 1± 10 125.00 125.00 100 20 20 20 20 20 100 20.0 30.0 40.0 50.0 60.0 70.0 100 20.0 30.0 40.0 50.0 60.0 70.0 112 65 1± 114.35 11 114.355 11 114.35 100 100 11 125.00 11 114.35 11 114.355 100 112 114.35 11 114.35 11 114.35 100 115 125.00 12 125.00 14 114.35 15 100 115 12 12 14 14<	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐらいの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキーので戻る ゲートキーですと粗調整チェックキーでをクリッ
NORAHEOO 内径 001 ゲイン 60.0 dB 1% 110 1± 64.08 11 644.08 11 100 1± 64.08 11 64.08 11 125.00 100 20 30.0 40.0 50.0 60.0 70.0 20 20 30.0 40.0 50.0 60.0 70.0 100 20.0 30.0 40.0 50.0 60.0 70.0 11% 65 1± 114.35 11 114.35 11 110.0 70.0 100 20.0 30.0 40.0 50.0 60.0 70.0 11% 655 1± 114.35 11 114.35 11<	STB-A3 50R の 2 回目ピークエコー 50R の 2 回目の反射エコー100mm が画面 60%超ぐら いの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキーので戻る
NORAHEOO ращон	STB-A3 50R の 2 回目ピークエコー 50R の 2 回目の反射エコー100mm が画面 60%超ぐら いの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキーので戻る ゲートキー を租調整チェックキー をクリッ クして、調整キー で、G1 開始を調整し、100mm
NORAHEOO 内径 001 グイン 60.0 dB 1× 110 1± 64.08 11 644.08 11 100 1± 64.08 11 644.08 11 125.00 100 1± 64.08 11 644.08 11 125.00 100 1± 10 1± 64.08 11 125.00 100 1± 1× 1× 1× 1× 1× 1× 100 20.0 30.0 40.0 50.0 60.0 70.0 1× 65 1± 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 114.35 11 <t< th=""><th>STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐらいの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキー●● で戻る ゲートキー●● と租調整チェックキー●● をクリックして、調整キー●● で、G1 開始を調整し、100mm エコーをG1 でカバーする</th></t<>	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐらいの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキー●● で戻る ゲートキー●● と租調整チェックキー●● をクリックして、調整キー●● で、G1 開始を調整し、100mm エコーをG1 でカバーする
NINDRAHE00 内径 001 グイン 60.0 dB 1½ 110 14 64.08 14 644.08 14 64.08 14 125.00 15 14 14 15 16 125.00 1	STB-A3 50Rの2回目ピークエコー 50Rの2回目の反射エコー100mm が画面 60%超ぐら いの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキーので戻る ゲートキー でと 1 調整チェックキー (e クリッ クして、調整キー で、G1 開始を調整し、100mm エコーを G1 でカバーする 調整後はエスケープキー ので自動校正画面に戻
INDRAHE00 P42 001	STB-A3 50R の 2 回目ピークエコー 50R の 2 回目の反射エコー100mm が画面 60%超ぐら いの高さになるように、感度を上げます (左図の例ではゲインを 20dB 上げています) 調整後はエスケープキーので戻る ゲートキー (アート と租調整チェックキー (アート をクリッ クして、調整キーので、G1 開始を調整し、100mm エコーを G1 でカバーする 調整後はエスケープキーので自動校正画面に戻 り、P2・音速校正をクリック

鉄骨超音波・実技試験向け設定手順

Page 12 / 18

*校正後には基本画面で確認をするのがデジタル探傷器の鉄則です

鉄骨超音波・実技試験向け設定手順

Page 13 / 18

5. STB 屈折角の測定

*測定範囲の設定(ゼロ点・音速)と探触子の STB 屈折角の測定とで、探傷器横軸(時間軸)校正 は終わりです。続いて縦軸(感度)の校正を行います。

- 6. JIS-DAC カーブの作成
- 6.1 評価モードを JIS DAC に設定する

鉄骨超音波・実技試験向け設定手順

Page 14 / 18

DAC/[TCG DAC/[TCGモード 基準ゲイン補正 20-80 DAC View オン	DAC/TCG モードがオフだと DAC 線作成不能 DAC/TCG モード選択にカーソル オフのままだと DAC モードが起動できない
オフ 標準 ASME-3 JIS カスタム	
DAC/ITCG DAC/ITCGモード 基準ゲイン補正 オフ	DAC モードを JIS タイプで選択
20-80 DAC View オン	DAC のタイプとして、 JIS を選択
	設定後後はエスケープキー で DAC 作成の画面 に戻る
オフ 標準 ASME-3 JIS カスタム	

6.2 0.5S ポイントの登録

注意: DAC エコポイントを記録して行く順番は基準となる 0.5S が最初であれば、後の順番の制約はありません。 しかし 0.5S→1.0S→1.5S 順の方がミスのあった場合に早めに気付きます。

Wa = 43.9	STB-A21			
C INDNAME 00 内径 001 ゲイン 60.0 dB 11 47.25 1× 82 1 ⁶ mm 現金部 100 11 124.85 51 G1開始 20.74 100 27.4	DAC ポイント1番目			
BB DAC/ TCG DGS/AVG	STB-A21 又は A2 の φ4×4 の穴を 0.5S で狙い、ピー クのエコー高さを 80% もしくは 80% 以上~100% 未満 の高さになるようにゲイン調整。			
40 20 20 32 32 32 32 32 32 32 32 4 4 5 5 5 4 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	0.5S のエコー高さが調整できたら、 P1・追加 キーで最 初の DAC ポイントを登録			

鉄骨超音波・実技試験向け設定手順

6.3 0.5S ポイントの登録

Page 16 / 18

6.3 1.5S ポイントの登録と完了操作

鉄骨超音波・実技試験向け設定手順

6.4 基準 DAC 線(L 線)の選択、測定範囲、屈折角、板厚の確認

鉄骨超音波・実技試験向け設定手順

Page 18 / 18

作成	設定ファイルの保仔
*ファイルタイプ [CAL	
*ファイル名 JIS-DAC125MM	DAC線を作成して、その設定を保存する場合には
	次へキー 次へを何度かクリックして、ファイルメニ
検査員ID	ューに移動。 P2・作成 クリックで左図の画面。
。 検査場所情報	カーソルの行間移動には次へキー、次へを使用します
*校正ID Calibration	ファイルタイプを CAL にして、名前を付けて P3・
作成 開く(&O) 保存(&S)	保存 で保存されます

【実技試験では終了後に初期化されてしまう。設定の保存はしない】

入射点を入力しない時としたときの違いに注意

*あくまでも個人的な見解ですが、勘違いや混乱を招きやすいので実技試験時には探傷器に入射点を 入力しないことを推奨します。

*鉄骨超音波実技試験では、「タレコミ」かどうかの判定が必要となる場合がある。板厚+αの深さに あるエコーは常に折り返され肉厚以内の深さとして表示されてしまう。判定に錯覚を起こす場合があ るので、必要があれば一時的に肉厚設定値を 18.xxmm から 50mm 程度に変更するなどの一時的な処 置も検討する。