

DAC の設定

1. DAC の設定を始める前に USM25J の時間軸、音速等の校正を完了している必要があり ます。完了後に下記の設定を確認してください。 印部分は必ずその値に設定する必 要があります。

BASE			
	RANGE	125mm	
	MTLVEL	3230m/s	
	D-DELAY	0.01mm	
	P-DELAY	7.456 µ s	
PULS			
	DAMPING	Low	
	POWER	High	
	DUAL	Off	
	PRF-MOD	10	
	GATE	2	
	aLOGIC	pos	
	aSTART	30.0mm	
	aWIDTH	60.0mm	
	aTHRSH	10%	
MEM			
どういう設定でも可			
DATA			
どういう設定でも可			

TRIG			
ANGLE	70.2		
X-VALUE	11.2		
THICKNE	500.0mm		
CAL	0		
RECV			
FINE G	0		
REJECT	0%		

2. 設定を確認してから DAC メニューの下の キーを押し、DAC 画面を表示します。

33.0 8	50.0	DACMOD>
0.5		off
	•	DACECHO
	•	3
	*	aSTART
	•	30.0
	• · · · · · · · · · · · · · · · · · · ·	dB COR>
		0.4 [®]
h=80 W=50	.0 Y=35.9 d	=16.9 ! [
TRIG REC	CV DAC M	IEAS CFG

3. DACMOD> off と表示されていることを確認し、右側の◀を押す。表示は RECORD> off に変わります。(>の表示は2個の機能を持っていることを表します。)

33.0 ®	50.0	DACMOD>
0.5	•	off
	•	DACECHO
	•	3
	•	aSTART
	•	30.0
	*	dB COR>
		0.4 ®
h = 8 4 W = 5 O	.0 Y=35.9 d	=16.9 ! [
TRIG RE	CV DAC M	EAS CFG

4. USM25J 本体右側にあるロータリーノブを時計方向に回転します。「Rcord a new DAC?」 という確認のメッセージが表示されます。

2001/03/25

5. 新しいDAC(距離振幅特性曲線)を作成するには前図のようにRECORD> off の右側 の◀を押します。RECORD> on と表示され、DAC 記録モードに入ります。

33.0 dB	50.0	RECORD>	
0.5	•	on	
	• •	DACECHO	
	*	0	
	••••	aSTART	
	• •	30.0	
	• • • • • • • • • • • • • • • • • • • •	dB COR>	
	· · · · · · · · · · · · · · · · · · ·	0.0 B	
h=75 W=50.	.0 Y=35.9	d=16.9 ! [
TRIG REC	CV DAC	MEAS CFG	
33.0 #	50.0	RECORD>	
33.0 ∄ ₀.₅	50.0	RECORD>	
33.Ø⊪ ₀.5	50.0	RECORD> on DACECHO	
33.0 ⊪ ₀.5	50.0	RECORD> on DACECHO Ø	
33.0 ⊪ ₀.5	50.0 	RECORD> on DACECHO Ø aSTART	
33.0ª	50.0	RECORD> on DACECHO 0 aSTART 30.0m	
33.0 ^d	50.0	RECORD> on DACECHO 0 aSTART 30.0m dB COR>	
33.0 	50.0	RECORD> on DACECHO Ø aSTART 30.0m dB COR> Ø.0d	
33.Ø⊞ 0.5 	50.0	RECORD> on DACECHO 0 aSTART 30.0m dB COR> 0.0d 0.0d	

6. A2の4×4穴を0.5スキップで狙い、エコー高さを80%に感度調整します。

54.0	ðdB ∶	44.8	RECORD>
0.5	•		on 🔤
			DACECHO
			0
		••••	aSTART
			30.0
			dB COR>
- Luthurner	مالنه مالنه ال	 	
h=77	W=44.8	Y=31.0	d=15.1 ! [
TRIG	RECV	DAC	MEAS CFG

7. DACECHO が反転表示されていない場合には、右側の◀を押し反転表示にします。次 に本体右側のノブを時計方向に回転すると「DAC echo ok?」と表示され、このエコー を採用していいか確認してきます。OK であれば、DACECHO 右側の◀を押して確定 します。

54.0 d	3 : 4 4	4.8	REC	ORD>
U.5	•		- on	
	•		DAC	ECH0
	.		1	
			aST	ART
	•		30.	Ømm
	·		dB	COR>
in the second se	in the intervence	- julie - La	Ø.0	dB
DAC echo o	k?			[
TRIG R	ECV D	DAC [MEAS	CFG

DACECHO 表示部は0から1に 進みます。

2001/03/25

8. aSTART を 40.0mm にします。4×4 穴を 1.0 スキップで狙います。ゲート内にエコー があることを確認して、本体右側ノブを時計方向にクリックします。「DAC echo ok?」 と確認されますので、良ければ DACECHO 右側の◀を押して確定します。

54.0	288 ;	86.7	RECORD>
U.5	•		n- on
	•		DACECHO
			2
	•		aSTART
	*		30.0
·····	·····		dB COR>
h=27	W=86.7	Y=70.4	d=29.3 ! [
TRIG	RECV	DAC	MEAS CFG

左図では aSTART の値を修正し ていないため 1.0 スキップエコー がゲート右端にかろうじてかかっ ている状態です。

9. aSTART を 80.0mm にします。4×4 穴を 1.5 スキップで狙います。ゲート内にエコー があることを確認して、本体右側ノブを時計方向にクリックします。「DAC echo ok?」 と確認されますので、良ければ DACECHO 右側の◀を押して確定します。

10. これで 1.5 スキップまでの入力が終わりました。RECORD > 右側の◀を押します。

するとDACMOD表示は左図のように off に変わります。

この状態で本体右側のノブを時計 方向にクリックします。 DACMOD DAC の表示になり、

USM25Jの画面には DAC 曲線が 表示されます。

各スキップ値の入力中に感度を高 く変更した場合には左図のように DAC 線が上方向に拡大された状 態で表示されます。

H線の高さが80%近辺になるように感度を下げます。

 ゲートメニューで aSTART の値を 15.0mm に戻します。USM25J の JIS-DAC 線はエ コー高さには太線表示されている L 線(M、H 線に変更可能)で反応しますが、作動 する時間軸範囲はバーゲートの範囲に限られます。したがってビーム路程等をデジタ ル表示させる場合には、ゲートスタート点(aSTART)は 12~15mm、ゲートの長さ (aWIDTH)は 60mm 程度に設定するのが一般的です。

これで DAC 線の設定は終わりました。必要ならメモリーしておきます。

ご注意1 L、M、Hのどの線を太くするかは自由に選べます。 L線を太く表示するときは、CFG メニューの BOLDLI>の値を1にします。 M線を太く表示するときは、CFG メニューの BOLDLI>の値を2にします。 H線を太く表示するときは、CFG メニューの BOLDLI>の値を3にします。

ご注意 2 DAC 描画後の感度微調整

DAC 線描画後の外気温や探触子表面状態の変化で、0.5 スキップエコー高さが H 線ちょうどにならないときは, DAC メニューの dB COR> で DAC 線の高さに影響を与えずに感度微調整をすることが出来ます。

が125mmを大きく超えてしまい、DAC2への入力がスムーズに行えなくなるためです。

ご注意3 DAC 描画時の測定範囲は 125mm でなくとも良い この説明書に記載されている各数値は探触子の磨耗状態等で当然変化します。また探触 子の屈折角が70°を超えているような場合は測定範囲 125mm でなく、測定範囲をあら かじめ200mm 等に設定してからで実施すべきです。これは1.5 スキップ位置ビーム路程